
Exam 1 Review

• What I regret the most is the loop part

• omega analysis of algorithms

• Bogo sort?

Static vs. instance variables

• What is a static variable

Static Variables

• Variables can either be “attached” to the class or to
instances of the class (objects).

• Static variables are not associated with any one object’s
state. They are usually properties or definitions.

• Non-static variables are called instance variables because
they are tied to exactly one instance of an object. They can
be accessed with the keyword ‘this’.

Static or No Static?

• When deciding if variable should be static:

Ask yourself: Is it possible that the value of this variable will
vary across different objects?

• Consider:

Rectangle class :

numSides;

height;

static (all rectangles have 4 sides)

not static (rectangles can have different dimensions)

Static Methods

• Methods also can either be “attached” to the class or to
instances of the class.

• Static methods do not depend on the state of the object.

• They can be answered without anything that could
reference the keyword “this”. Called using the class name.

• Non-static methods rely on an object’s state, often
depending on the values of instance variables. Called on an
instance.

Static or No Static?

• To decide if your method should be static:

Ask yourself: Does this method depend on the state of the
object, or is it always the same regardless?

• Consider a Rectangle class:

getArea();

calculateArea(int h, int w); static (formula; all
info provided as inputs)

not static (depends on a particular rectangle’s dims)

Passing references as parameters: 1/2

• The reference (the address of an object) is copied into a new

reference variable

static void addYear(Turtle t){

 t.age ++;

 }

public static void main (String[] args){

 Turtle myrtle = new Turtle();

 myrtle.age = 5;

 addYear(myrtle);

 System.out.println(myrtle.age);

 System.out.println ("Happy birthday!");

}

myrtle t

Will myrtle’s age change?

Passing references as parameters: 2/2

• The reference (the address of an object) is copied into a new

reference variable

static void addYear(Turtle t){

 t = new Turtle();

 t.age ++;

 }

public static void main (String[] args){

 Turtle myrtle = new Turtle();

 myrtle.age = 5;

 addYear(myrtle);

 System.out.println(myrtle.age);

 System.out.println ("Happy birthday!");

}

myrtle t

Will myrtle’s age change?

Passing references as parameters: 2/2

• The reference (the address of an object) is copied into a new

reference variable

static void addYear(Turtle t){

 t = new Turtle();

 t.age ++;

 }

public static void main (String[] args){

 Turtle myrtle = new Turtle();

 myrtle.age = 5;

 addYear(myrtle);

 System.out.println(myrtle.age);

 System.out.println ("Happy birthday!");

}

myrtle t

Will myrtle’s age change?

Example of passing references
(immutable Strings) as parameters

static void changeName(String name){

 name = "Mr. " + name;

}

public static void main (String[] args){

 String myname = "Smith";

 changeName (myname);

System.out.println (myname);

}

Example of passing references
(mutable StringBuilder) as parameters

static void changeJunior(StringBuilder name){

 name.append(" Jr.");

}

public static void main (String[] args){

 String myname = "Smith";

 changeJunior (myname);

 System.out.println (myname);

}

Initialization of generics 1/2

public class public LinkedList<E> {
 public LinkedList() {
 }

boolean add(E e) {
 }
}

• Program:
LinkedList<Integer> list = new LinkedList<Integer>();

When this code compiles: the definition of the class changes: all Es are
substituted with Integer

Initialization of generics: 2/2

public class public LinkedList {
 public LinkedList() {
 }

boolean add(Integer e) {
 }
}

• Program:
LinkedList<Integer> list = new LinkedList<Integer>();

It is important because the logic of operations remains the same for any
type of data: so we do not need to implement a separate LinkedList for
integers, for Strings and for the list of Cars.

At this moment the generic
list becomes a LinkedList of
integers

Example: method with generics
Not everything can be compared

Access Static or
instance
method

Declaring that we
are going to use a
generic type here

Return
type

public static <T extends Comparable<T>> T min (T x, T y) {
if (x.compareTo(y) < 0)

 return x;
 else
 return y;
}

public static void main(String [] args) {
String minStr = min(args[0], args[1]);

 System.out.println(minStr);
}

Dynamic/late binding: 1/5

private class Polymorphism {
 void method1 () {
 System.out.println("Polymorphism");
 }
}

private class Concept extends Polymorphism {
 void method2 () {
 System.out.println("Concept");
 }
}

class Generics extends Polymorphism {
 void method1() {
 System.out.println("Generics");
 }
}

Polymorphism
method1()

Concept
method2()

Generics
method1()

• Overriding
method1 of a
superclass

Dynamic/late binding 2/5

private class Polymorphism {
 void method1 () {
 System.out.println("Polymorphism");
 }
}

private class Concept extends Polymorphism {
 void method2 () {
 System.out.println("Concept");
 }
}

class Generics extends Polymorphism {
 void method1() {
 System.out.println("Generics");
 }
}

Polymorphism
method1()

Concept
method2()

Generics
method1()

• During compilation the compiler only checks that the
method exists in the object of type Polymorphism –
because all the objects in the array are stored in a
variable of type Polymorphism (superclass)

private class Test {
public static void main (…) {
 Polymorphism [] p =
 new Polymorphism [3];
 p[0] = new Polymorphism();
 p[1] = new Concept();
 p[2] = new Generics();

for (int i =0; i< 3; i++)
 p[i].method2();
 }
}

Dynamic/late binding 3/5

private class Polymorphism {
 void method1 () {
 System.out.println("Polymorphism");
 }
}

private class Concept extends Polymorphism {
 void method2 () {
 System.out.println("Concept");
 }
}

class Generics extends Polymorphism {
 void method1() {
 System.out.println("Generics");
 }
}

Polymorphism
method1()

Concept
method2()

Generics
method1()

• During compilation the compiler only checks that the
method exists in the object of type Polymorphism –
because all the objects in the array are stored in a
variable of type Polymorphism (superclass)

private class Test {
public static void main (…) {
 Polymorphism [] p =
 new Polymorphism [3];
 p[0] = new Polymorphism();
 p[1] = new Concept();
 p[2] = new Generics();

for (int i =0; i< 3; i++)
 p[i].method2();
 }
}

THIS WILL NOT COMPILE

Dynamic/late binding 4/5

private class Polymorphism {
 void method1 () {
 System.out.println("Polymorphism");
 }
}

private class Concept extends Polymorphism {
 void method2 () {
 System.out.println("Concept");
 }
}

class Generics extends Polymorphism {
 void method1() {
 System.out.println("Generics");
 }
}

Polymorphism
method1()

Concept
method2()

Generics
method1()

• During compilation the compiler only checks that the
method exists in the object of type Polymorphism –
because all the objects in the array are stored in a
variable of type Polymorphism (superclass)

private class Test {
public static void main (…) {
 Polymorphism [] p =
 new Polymorphism [3];
 p[0] = new Polymorphism();
 p[1] = new Concept();
 p[2] = new Generics();

for (int i =0; i< 3; i++)
 p[i].method1();
 }
}

This compiles but the code for
method 1 is not bound to this
place in the program

Dynamic/late binding 5/5

private class Polymorphism {
 void method1 () {
 System.out.println("Polymorphism");
 }
}

private class Concept extends Polymorphism {
 void method2 () {
 System.out.println("Concept");
 }
}

class Generics extends Polymorphism {
 void method1() {
 System.out.println("Generics");
 }
}

Polymorphism
method1()

Concept
method2()

Generics
method1()

• When the program is running, it will look at what
actual object is stored at the other end of a
variable: and will bind (load into memory) the
corresponding method during run time. This is
called Dynamic binding.

private class Test {
public static void main (…) {
 Polymorphism [] p =
 new Polymorphism [3];
 p[0] = new Polymorphism();
 p[1] = new Concept();
 p[2] = new Generics();

for (int i =0; i< 3; i++)
 p[i].method1();
 }
}

Cenerics has its own
method1, but it will only
be loaded during run-time

Interfaces and multiple inheritance

• One class can only extend one superclass in Java

• Multiple inheritance (inheriting methods from
superclasses belonging to different hierarchies) is not
supported in Java

• However one class can implement multiple Interfaces

• In this case it still cannot make use of the code from
different classes (because interfaces do not contain any
actual code)

• However now the object can be part of different
polymorphic collections: it can play different roles

Printable [] todayPile = new Printable[3];
todayPile[0] = new Report();
todayPile[1] = new Report();
todayPile[2] = new Memo();

for (int i =0; i< 3; i++)
 todayPile[i].print();
}

Example: multiple inheritance

class Report extends Paper, implements

 Printable, Comparable, Disposable {}

class Memo implements Printable,

 Disposable {}

interface Printable {
 void print();
}

interface Disposable {
 void dispose();
}

Disposable [] discardPile = new Disposable[3];
discardPile[0] = new Report();
discardPile[1] = new Report();
discardPile[2] = new Memo();

for (int i =0; i< 3; i++)
 discardPile[i].dispose();
}

Same Report object plays
different roles: once as a
Printable object and other time
as a Disposable object

All objects that implement the same Interface
must have the implementation of all the
method(s) declared in this Interface, and now can
be uniformly treated in the same collection

Abstract data types vs abstract
data structures?
• Abstract Data Type represents an idea of a type that based on the needs

of the particular application. It includes the description of the data to be

stored and the desired operations we want it to support.

• Data structures are not abstract: they are very concrete. They represent

the actual layout of data in computer memory. We use Array, Linked List,

later the Linked Tree data structure to implement the functionality

declared in the specification of a given ADT.

• Each ADT can be implemented using different concrete data structures

Linked List: Node

• The amount of times Node is used to describe different
objects. Head is a Node but it has no data so it's not really
a Node but it's still a Node... Mindbending

• Could you please explain how linked list work and how do
we add in front of the list and in the middle?

Also see recitation 6

Explained on the board

Big O

• Knowing when to use the Big O notation in an algorithm

• You calculate big O to characterize the quality of an
algorithm or to compare several algorithms

Big O practice

• I feel like I need more practice looking at code and
determining the time complexity of it.

• How to get the time complexity given code.

• To understand how to individually evaluate a loop and
determine its time complexity.

• Quickly understanding the math of the loops

• I think I just need more practice with remembering what
applies to what

Here are big O exercises for all different kinds of loops: LINK

https://docs.google.com/document/d/1GmIG4lZmkKyIOlQ7z4iE2sullr8oBVcQeSw3MyAYCJI/edit?usp=sharing

Big confusion: O (log n)

• I don't understand why binary search is log n
• how to identify if an algorithm is log n.
• When would O(logn) be used for Big Oh and how is

it derived?
• when the answer is O(logn)
• The log values in Big O
• loops that are log(n) or nlog(n)
• How do you calculate logarithmic runtime

from while loops?
• I'm still a bit lost on the inner loops and whenever log

is involved.

Miscellaneous

• RAM model of computation: expressing algorithm
runtime in terms of n, not O(n)

• i am confused about the different sorting
techniques, for example bubble sort. I just don't
understand the implementation of them in this
class.

• SQueue

• Balanced Parentheses

	Slide 1: Exam 1 Review
	Slide 2
	Slide 3: Static vs. instance variables
	Slide 4: Static Variables
	Slide 5: Static or No Static?
	Slide 6: Static Methods
	Slide 7: Static or No Static?
	Slide 9: Passing references as parameters: 1/2
	Slide 10: Passing references as parameters: 2/2
	Slide 11: Passing references as parameters: 2/2
	Slide 12: Example of passing references (immutable Strings) as parameters
	Slide 13: Example of passing references (mutable StringBuilder) as parameters
	Slide 14: Initialization of generics 1/2
	Slide 15: Initialization of generics: 2/2
	Slide 16: Example: method with generics Not everything can be compared
	Slide 17: Dynamic/late binding: 1/5
	Slide 18: Dynamic/late binding 2/5
	Slide 19: Dynamic/late binding 3/5
	Slide 20: Dynamic/late binding 4/5
	Slide 21: Dynamic/late binding 5/5
	Slide 22: Interfaces and multiple inheritance
	Slide 23: Example: multiple inheritance
	Slide 24: Abstract data types vs abstract data structures?
	Slide 25: Linked List: Node
	Slide 26: Big O
	Slide 27: Big O practice
	Slide 28: Big confusion: O (log n)
	Slide 29: Miscellaneous

